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Abstract
We present the analysis of 18 DIII-D shots heated by neutral-beam injection (NBI). 
[Typical plasma parameters are n~2x1013 cm-3, T~1keV.] As energetic ions seeded by 
NBI resonate at the frequencies of various Alfven eigenmodes (AEs), we observe 
rich toroidal Alfven eigenmode (TAE) activity as these weakly-damped modes are 
driven. Both steady and modulated beam power have been investigated. 

Statistical techniques were used to benignly filter out the polluting effect of 
edge-localized modes (ELMs) in the observed fluctuation spectra. Guided by 
recent simulations [Spong et al 2021; Nucl. Fusion 61, 116061] which identify 
nonlinear coupling between TAEs and zonal flows, we seek to correlate the 
observed nonlinear interaction between ensembles of AEs and lower-frequency 
MHD modes with coincident perturbations in the fast-ion distribution function. 

Evidence for energy exchange due to this coupling is given by higher-order 
spectral techniques. In particular, we report on the evolution of consistent 
bicoherent features in magnetic fluctuation data.
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Introduction to TAEs
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Alfven eigenmodes (AEs) are an interaction of shear Alfven waves (SAW), 

Parallel wave-vector is given approximately by

Toroidal Alfven eigenmode (TAE) results from counter-propagation

Toroidal geometry facilitates eigenmodes1

[1] Pinches, S., Nonlinear Interaction of Fast Particles with Alfven Waves in Tokamaks, University of Nottingham (1996)  4



Interaction of counter-propagating cylindrical modes 
provides frequency gap2

[2] Heidbrink, W., Basic physics of Alfvén instabilities…, Physics of Plasmas 15, 055501 (2008); https://doi.org/10.1063/1.2838239 

Garcia-Muñoz, M.et al.2019 Active control of Alfvén eigenmodes in 
magnetically confined toroidal plasmas. Plasma Phys. Control. Fusion 61, 
054007

5

https://doi.org/10.1063/1.2838239


Critical value of safety factor is

TAE frequency (in local frame) is

Safety factor profile determines TAE localization1

𝝆

Spatial distribution of eigenmode 
is related to inversion of qTAE(r0) 

q = 9/4-> (2,4) 

q = 13/4 -> (2,6) 

q = 11/2 -> (1,5) 

q = 15/2 -> (1,7) 
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Pawley, C.J. et al. 2017 Advanced control of neutral beam injected 
power in DIII-D. Fusion Engineering and Design. 123, 453-7.

NBI seeds fast-ion population which drives TAEs2 
Experiment used  co-injected deuterium NBI to 
achieve sufficient fast-ion pressure to saturate 
modes
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Pace, D.., Heidbrink, W., and Van Zeeland, M 2015 Keeping fusion 
plasmas hot. Physics Today 68.10 https://doi.org/10.1063/PT.3.2946
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Experimental data
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Both steady and modulated beam power investigated 
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Δtmod ~ 20 ms

scintillator

Favorable discharge parameters informed 
via investigation of archived data-set3

DIII-D platform delivers high reproducibility 
of plasma conditions and NBI programming

 
[3] Riggs, G., Interpretations of Bicoherence in Space & Lab Plasma Dynamics. MS thesis (2020)
https://doi.org/10.33915/etd.7655. 

#184925

#184936

B0 ~ 1.8 T

B0 ~ 1.3 T
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Scintillator data compares favorably 
with output of RABBIT4 simulation
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                          (EFIT @ 500ms)

Deposition of beam energy facilitates fusion 
reactions, enhancing neutron flux

10[4] M. Weiland et al., RABBIT: Real-time simulation of the NBI fast-ion…, Nucl. Fusion 58 082032 (2018); https://doi.org/10.1088/1741-4326/aabf0f

https://doi.org/10.1088/1741-4326/aabf0f


Mirnov coil Interferometer

Frequency

Density ramp interrogates the mechanism of TAE 
coupling via scan of frequency & amplitude

3x1013 cm-3
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C-coil off                       

Eigenmodes augmented by C-coil perturbation
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Mode frequencies 
fall during ramp of 
n=1 mode
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Wave-wave interaction
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Acquired spectrograms are ELM-filtered conveniently

Original data

Mean of FFT 
amplitude 
dictates 
exclusion
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This results in ELM-filtered bispectraELM-filtered bispectra reveal signatures of 
3-wave interaction 
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Nonlinear wave-wave coupling inferred from 
magnetics data
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Low bicoherency over 
long time interval is due
to changes in frequency

Phase-coherency b/t 
Fourier components 
at 13, 85, and 98 kHz
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Morlet wavelet optimizes simultaneous resolution in 
time and frequency5

[5] Van Milligen, B. et al., Nonlinear phenomena 
and intermittency in plasma turbulence. 
Phys. Rev. Let. 74(3), 395 (1995);
https://doi.org/10.1103/PhysRevLett.74.395
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DIII-D Shot #184936
Magnetics

Wavelet-based bicoherence enables highly time- and 
frequency-resolved assessment of phase-coherency

Analysis of 2ms time interval 
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DIII-D Shot #184936
Magnetics

Mode-mode interaction evinced by coherent sum and 
difference frequencies
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84 kHz, n=2 mode will be 
found along this line

Strongest interaction b/t n=2 
and n=3 TAE, mediated by low 
frequency (~13 kHz) MHD mode
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DIII-D Shot #184936
Magnetics

Biphase evolution is consistent with nonlinear 
3-wave coupling
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biphase indicative of 
quadratic coupling 

Negligible b2 observed 
where biphase is 
non-stationary
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Multiplication of band-
passed data is in-phase 
with ~13 kHz mode

Interpretation supported by correlation between 
beat dynamics and low-frequency fluctuations
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Mode identification benchmarked by cross-phase analysis6 
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22[6] Strait, E. J. Magnetic diagnostic system of the DIII-D tokamak, Review of scientific instruments 77(2): 023502 (2006); https://doi.org/10.1063/1.2166493
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Assessment of noise floor
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Expected value of bicoherence is typically well- 
approximated by exponential distribution 

N=2000

N=20000

Realizations

For a given point in 
bi-frequency space, we 
construct the expected b2 
using calculated Fourier 
amplitudes but random 
phases

N=200
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Modelled distribution given by:

where 𝜇 is mean of random-phase
realizations

Critical value of bicoherence for 
confidence level 0 < 𝛼 < 1:

Confidence interval may be derived using quantile7

[7] Poloskei, P. et al., Bicoherence analysis of nonstationary and nonlinear processes. (2018) arXiv:1811.02973
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Technique provides robust filtering of spurious 
bicoherence for non-stationary signals   

Original

Mean(b2)

Noise-filtered b2

99% C.I.
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Consistent phase-coherency is unlikely to be discarded   

Original Noise-filtered b2

99% C.I.

Mean(b2)
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What’s next?
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Priorities for 2023
Use FAR3d and TRANSP simulations to provide insight 
into wave-wave and wave-particle interactions

Correlate fluctuations in density and magnetic field 
with perturbations in fast-ion distribution function 
(e.g., FILD fluctuation analysis)

Quantify role of nonlinear coupling and energy 
transfer in mediating saturated amplitude of TAEs

Assess efficacy of Berk-Breizman model to explain 
observed AM/FM, or other nonlinear effects

Develop “flowchart”
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RABBIT simulations 
report sharp decrease in 
fast-ion pressure profile 
during discharge
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Toroidal geometry facilitates eigenmodes
fcutoff = 20 kHz

fcutoff = 50 kHz

Frequency modulation likely in HP-filtered data
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[8] Lesur, M., The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes, Ecole Polytechnique (2010)  32



Appendix:
Bicoherence primer
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Fourier transform of auto/cross-correlation = power/cross-spectrum

Bispectrum = higher order transform; identifies nonlinear interactions 
via

Auto/cross-bicoherence = normalized auto/cross-bispectrum

Detects complementary phase relationships between frequency triples 

Bispectrum is generalization of power spectrum9

[9] Kim & Powers, Digital bispectral analysis of self‐excited fluctuation spectra, Phys. Fluids 21, 1452 (1978); https://doi.org/10.1063/1.862365 34

https://doi.org/10.1063/1.862365


Im(z)

Re(z)

𝜑1 

𝜑2 

𝜑3 𝛽 = 𝜑1  + 𝜑2  - 𝜑3  • When Fourier amplitudes are 
slowly varying in time, B(f1, f2) depends entirely on the 
dynamics of biphase 𝛽

• Crucially, the bispectrum will 
tend to null when 𝛽 is random 
or linear in time 

• A static biphase thus 
corresponds to nonzero values 
of bicoherence

• Oscillatory biphase does not 
generally lead to vanishing 
bicoherence

|z|=1

Bicoherence determined by phase-coherency
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⟨exp(i𝛽(t))⟩ = 0 ⟨exp(i𝛽(t))⟩ ≠ 0

Phase and amplitude modulation require careful 
interpretation

𝛽(t) = 2𝜋t 𝛽(t) = 2𝜋t𝛽(t) = 𝜋[2t + (1/2)sin(2𝜋t)]

𝛴 𝛴 𝛴

36

⟨B(t)exp(i𝛽(t))⟩ ≠ 0

dB/dt ≠ 0



Bi-frequency space is 12-fold degenerate for 
auto-bicoherence analyses

f2 = 0.3 fs
f1 = 0.1 fs

f3 = 0.4 fs

conjugate pairs
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Thanks for your time!

email : gariggs@mix.wvu.edu
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